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ABSTRACT 

 

In this paper a genetic algorithm based multi-objective optimization approach is applied in 

order to predict the optimal machining parameters for the end milling process of aluminium 

alloy 6061 T6 combined with minimum quantity lubrication (MQL) conditions using water-

based TiO2 nanofluid as cutting fluid. The optimization is carried out employing a parametric 

model (in terms of input cutting parameters, i.e., cutting speed, feed rate, depth of cut, MQL 

flow rate and % volume concentration of nanofluid) and exploiting the capabilities of the 

MOGA-II algorithm applied to the constrained machining problem. The objective functions 

selected to optimize are: to minimize the surface roughness; to maximize the material 

removal rate; and to minimize the flank wear of the cutting tool. The output of the 

optimization includes several alternative optimal solutions, i.e., Pareto frontier, and the best 

compromised configuration of the cutting parameters is selected subject to weighted 

preference. 
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INTRODUCTION 

 

The utilization of cutting fluids is integrated with the manufacturing processes. As the 

development of alternative manufacturing process technologies to replace machining is still 

a prohibitive task, preventing the negative environmental impact of machining can be 

achieved essentially by operating modifications to existing processes [1]. With increasing 

global eco-awareness, the application of sustainability indices in manufacturing units, and 

strict regulations due to the detrimental effects of cutting fluids on the environment and 

human exposure, the manufacturing world is in continuous pursuit of viable methods of 

economic dry machining. Only the near-dry machining process, also termed as minimum 

quantity lubrication (MQL), can offer a near-term solution to the problem [2-4]. Minimum 

quantity lubrication is a technique of sustainable manufacturing that incorporates all the 

issues related to machining [5, 6]. It aims to reduce the hazardous effects of coolants on the 

atmosphere and to minimize the resource consumption during a product life cycle which 

includes design, processing, production, packaging, transport, the use of the product and its 
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disposal [7]. According to one study [8], the total cost of cutting fluids incurred during a 

machining process ranges from 7% to 17% of the total machining cost. Therefore a direct 

gauge of sustainable manufacturing is the reduction in the amount of cutting fluids during 

machining. MQL ensures safety of the environment and the worker and is a cost-effective 

technique [9]. The objective of MQL is to use the metal-working fluid in such a quantity that 

the final product, chip and machine remain in a dry and safe environment. This amount is 

usually three to four orders of magnitude less than is normally used in wet machining. The 

typical flow rate for MQL is about 50–500ml/hr [10-12]. Minimum quantity lubrication is 

also termed as near-dry lubrication [13] or microlubrication [14]. The idea of reduced 

lubrication emerged during the last two or three decades. In the recent past, there has been a 

general liking for dry machining [15]. To avoid the problems caused by cutting fluids, 

significant advances have been made during the last decade in the field of dry and near-dry 

machining [16]. In particular, MQL machining has been acknowledged as an alternative to 

dry and wet machining on account of its eco-friendly distinctiveness. A considerable number 

of researches in the mentioned field have also established its potential application in many 

practical machining operations [17]. Machining with MQL has been widely applied in many 

machining processes such as drilling [18-21], milling [7, 22-25], turning [11, 20, 26-28], and 

MQL grinding [29-31]. 

Minimum quantity lubrication (MQL) can be considered as a viable substitute for 

conventional cooling. In MQL a small amount of lubricant atomized in a compressed air flow 

is supplied to the cutting zone. Since the cooling capacity of the MQL flow largely depends 

on the air flow, complete replacement of the flood cooling medium with MQL is still 

considered complex [5, 32-36] and its application scope is still uncertain. Since a very minute 

amount of cutting fluid is used in MQL, its heat-carrying capacity and lubrication capability 

is inadequate [37]. Hence the heat-carrying capacity and lubricating ability of cutting fluids 

have to be improved. In order to achieve a high cooling and lubricating capability with 

minimum quantity lubrication, a fluid with high thermal conductivity must be utilized. 

Cooling is one of the most important challenges in the machining process [38]. High adhesion 

at high cutting speed ranges, high thermal loads, as well as work-hardening of the material 

present some other difficulties in machining. The conventional methods of enhancing the 

cooling rate have already been stretched to their limits [39-42]. The use of novel approaches 

is essential in order to achieve high performance cooling and lubrication. Nanofluids provide 

a potential way to fulfill this requirement. 

Nanofluids belong to the novel group of potential heat transfer fluids with superior 

thermo-physical properties and heat transfer performance. The results of the latest researches 

with nanofluids in machining show the promising performance of these fluids as a 

replacement for conventional metal-working fluids accompanied with minimum quantity 

lubrication techniques. The applicability of nanofluids as coolants is mainly because of their 

enhanced thermal conductivity due to solid particles inclusions [43-46] and the convection 

heat transfer coefficient of the fluid can be greatly improved by nanoparticles suspensions 

[47-51]. Nanofluids can be conveyed to the cutting zone in a machining process through 

nozzles like flood cooling systems, but the higher manufacturing costs of nanofluids and 

large wastage during machining application [52-55] have prompted researchers to explore 

the greater potential of nanofluids incorporated with the principles of MQL.  A lot of research 

on the application of nanocutting fluids has been reported in the literature about the use of 

nanoparticles as additives to traditional oil-based lubricants and the improved machining 
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performance in terms of reduced wear and decreased friction. However, research on the 

application of nanoparticles as a water-based cooling / lubricating medium is very rare [56]. 

The application of water-based Al2O3 and diamond nanofluids in MQL grinding shows 

promising improvements in surface roughness, a reduction in the grinding force, and an 

improved G-ratio with high concentrations of nanofluids as compared to pure water 

application [57, 58]. Research was carried out to investigate the wheel wear and the 

tribological characteristics in wet, dry and MQL grinding of cast iron. The tribological 

properties and application performance of water-based TiO2 nanofluid were investigated in 

the MSR 10D four ball tribotester and in bench drilling operations [56]. It was found that 

surface-modified TiO2 nanoparticles can effectively reduce the load-carrying capacity, 

friction reducing and anti-wear properties of pure water. Water-based nanofluids can serve 

as more sustainable and environment-friendly cutting fluids, given the toxicity and non-

biodegradability of oil-based fluids 

With the advent of sustainability concepts in manufacturing, the major way to 

sustainability is not only by utilizing the minimum quantity of cutting fluids but also by 

optimizing the amount of cutting fluids, together with a proper selection of cutting fluid, that 

results in a reduction in cost and adds to the sustainability of the process. Practical 

manufacturing problems are often characterized by many non-compliant and often 

conflicting measures of performance, or objectives. Multi-objective optimization is different 

from single objective optimization in that single objective optimization is used to find the 

best design point or decision from among many, and usually this best design point is the 

global maximum or global minimization, depending on the type of optimization [59]. In the 

case of multiple objectives, however, it is not necessarily the case that a single solution is the 

best design with respect to all the objectives, due to incommensurability and conflict among 

objectives. For such problems where multiple objectives cannot be simply compared with 

each other, multi-objective optimization usually attempts to give a set of solutions. The 

problem usually has no exclusive, perfect (or single utopian) solution, but a set of non-

dominated, alternative solutions, known as the Pareto-optimal solutions [60]. The aim of this 

research is to optimize the process of end milling of aluminium alloy 6061 T6 with minimum 

quantity lubrication using water-based TiO2 nanofluid. The process goals are to obtain better 

surface quality as well as higher productivity in terms of a higher material removal rate with 

the least damage or wear to the cutting tool. This is a problem of conflicting objectives and 

thus calls for the application of multi-objective optimization for the simultaneous 

achievement of all the process goals. 

 

Table 1. Process control parameters and their ranges. 
 

Factors Levels 

1 2 3 4 5 

Cutting speed (rpm) 5200 5300 5400 5500 5600 

Axial depth of cut (mm) 230 300 370 440 510 

Feed rate fz (mm/min) 0.75 1.50 2.25 3.00 3.75 

MQL flow rate (ml/min) 0.31 0.48 0.65 0.83 1.00 

% volume concentration of nanofluid 0.5 1.5 2.5 3.5 4.5 
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METHODS AND MATERIALS 
 

Process Control Parameters and their Ranges 

The process parameters used for this research are spindle speed, feed rate, depth of cut, 

minimum quantity lubricant flow rate and % volume concentration of nanofluid. Five levels 

of machining variables are selected, as shown in Table 1.  

 

Workpiece and Cutting Tool Material 

The material used for the study is aluminium alloy AA6061T6. The major alloying elements 

are Si, Cu and Mg. The tool is used for the purpose of machining. Specifications of the inserts 

used are listed in Figure 1. Inserts are commercially available tools as recommended by the 

supplier. 

 
r 

(mm) 

d 

(mm) 

l 

(mm) 

a 

(mm) 

l1 

(mm) 

d1 

(mm) 
 Composition: Co6.0%; WC balance 

Hardness: HV 1630 
0.7874 4.9022 7.7978 3.175 1.0922 2.4892 15o 

 

Figure 1.  Insert specifications used in the study (supplier: M/s CERATIZIT). 

 

Parametric Models 

The respective response surface models for surface roughness, material removal rate and tool 

wear (TW) are shown in Eq. (1)–(3). 
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where, 𝑅𝑎 = Average surface roughness measured in m; MRR = Material removal rate 

measured in mm3/min; FW = Max. flank wear measured in m; x1 = Spindle speed measured 

in rpm; x2 = Feed rate measured in mm/min; x3 = Depth of cut measured in mm; 

x4 = MQL flow rate measured in ml/min and x5 = %volume concentration of nanofluid. 
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OPTIMIZATION MODELLING 

 

The optimization problem in this study has the aim of finding the best compromised 

configurations of the end milling process parameters so as to achieve the trade-offs solutions 

for the three conflicting objective functions. The flow chart for the optimization process is 

shown in Figure 2. The designs of experiment used for the parametric modelling with central 

composite design methodology are used as the initial population for the multi-objective 

optimization algorithm with a 5-variables at 5-levels strategy resulting in 32 experiments. 

The algorithm is set to run for a total of 100 generations. The optimization problem is 

constrained using process-specific parametric constraints which are given as the upper and 

lower bounds on the design variables and the process objectives. The flow chart for the 

MOGA-II algorithm is shown in Figure 3. 

 

Terms Used in Multi-objective Optimization Problem Formulation 

The different terms and concepts used in multi-objective optimization are as follows: 

1) Design variables or decisional parameters are the set of input parameters; best possible 

combinations of input variables are determined by optimization. In this study the input 

variables which are used for optimization are the axial depth of cut, spindle speed, feed 

rate, minimum quantity lubricant flow rate and % volume concentration of nanofluid.  

2) Objective functions are the outputs or the goals of an optimization; surface roughness of 

the machined part, material removal rate and tool wear as obtained from SEM are used 

as the objective functions in this single-pass milling parameter optimization problem. 

Surface roughness is not only a quality indicator but also the final stage in controlling the 

machining performance and the operation cost [61]. Surface roughness is measured as 

Ra, which is the arithmetical mean deviation of all the measured values in the assessed 

profile from the mean line of that profile. A section of standard length (17 mm) 

determined from the capability of the Perthometer available, is sampled from the mean 

line on the roughness chart. The material removal rate (MRR) is taken as another 

objective function which serves as the basis of optimization. MRR is a measure of 

quantity, i.e., machining productivity. Therefore the two objectives, namely surface 

roughness and the material removal rate, are conflicting, i.e., one has to be compromised 

in order to achieve a gain in the other. The third objective function is to minimize the tool 

wear.  

3) Design constraints are the specified requirements that must be satisfied by design variables 

and the functional constraints, i.e., that restrictions must be followed by the objective 

functions. 

 

A multi-objective optimization problem is completely defined by a set of k parameters 

(design or decision variables), a set of m objective functions and a set of n constraints. The 

objective functions and the constraints are functions of the decision variables. The aim of 

optimization is to 

 
(y))....(y),......2(y),1 mff(f  f(y) z maximize or minimize 

 (4)
 

satisfying the constraints 0,(y))....c(y),......2c(y),1 n(c  c(y)   (5) 
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where .Z).z,.........z,z z ,Y).y,.........y,(y y m21k21  y is defined as the decision 

variable vector, z is given as the objective function vector, Y is the decision space and Zf  = f 

(Yf) is given as the objective space. The most feasible set Yf is the set of decision variables 

vectors fulfilling the constraints c(y) 0. 

Each objective has been constrained within upper and lower limit boundary 

conditions: these are adopted from the experimental scope of the response variables. To 

achieve an effective optimization of a machining process, the machining constraints must be 

fully satisfied. These constraints work as boundary conditions within the experimental scope. 

The constraints considered in this study are given by Eq. (6)–(16). 

 

Minimize surface roughness,                  ),,,,( 54321 xxxxxfnRa          (6) 

Maximize material removal rate,           ),,,,( 54321 xxxxxfnMRR         (7) 

Minimize flank wear                                 ),,,,( 54321 xxxxxfnFW          (8) 
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Design

Next Iteration

True 

 
 

Figure 2. Optimization process flow chart. 

 

Subject to: 

maxmin 111 xxx 
 (9) 

maxmin 222 xxx 
 (10) 

maxmin 333 xxx 
 (11) 

maxmin 444 xxx 
 (12) 

maxmin 555 xxx 
 (13) 

 

 



 

Najiha et al  /International Journal of Automotive and Mechanical Engineering 13(2) 2016   3345-3360 

3351 
 

GA Simulations

S`(Np) = Distribution of 

designs in fronts; 

calculation of crowding 

distance

S``(Np) = Selection of best 

design from S`(Np)

Q = Cross-over and 

mutation on S``(Np) 

selected designs 

S```(Np) = S``(Np) U Q

S```(Np) distribution into 

fronts

Select the best design 

from the front

Initialization of the 

population

S(Np) = DOE 

Start

End

Elitism in MOGA-II

gen<max gen

No

Yes

gen = gen+1

Fitness evaluation of each 

member of population

 
 

Figure 3. Flow chart for MOGA-II algorithm. 
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While 

maxmin RaRaRa 
 (14) 

maxmin MRRMRRMRR 
 (15) 

maxmin FWFWFW 
 (16) 

 

Optimization Algorithm 

In this research an algorithm called MOGA-II design environment is employed for multi-

objective optimization. MOGA (Multi-objective genetic algorithm) while II designates the 

proprietary version. This is a genetic algorithm where designs of experiments serve as “initial 

population”. The best individuals are evaluated, recombined and mutated to constitute a new 

population. MOGA was a first generation genetic algorithm [62], while MOGA-II is a second 

generation evolutionary algorithm with elitism. The multi-objective optimization performed 

using the MOGA-II algorithm results in 3232 overall designs including feasible and 

unfeasible designs. The number of feasible designs is 2963. From these 2963 designs, only 

1156 Pareto designs are obtained and these are used to find the best compromised optimum 

design. 

 

PARETO DESIGNS 

 

The result from MOGA-II is a list of optimal feasible solutions depicting a trade-off among 

the three objectives. This set is called a Pareto set. Pareto designs are selected from among 

the feasible designs, thus the feasibility of these designs is ensured. The Pareto approach to 

optimization is aimed at identifying the set of parameters that characterize a design and 

beyond which no aspect of performance can be improved without compromising another.   

 

 
 

Figure 4. Pareto designs distribution with depth of cut. 
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Figure 5. Pareto designs  distribution with feed rate. 

 

 
 

Figure 6. Pareto designs distribution with MQL flow rate. 

 

The final result of a multi-objective optimization is a set of 1156 different designs 

belonging to the Pareto frontier that is the set of non-dominated optimal solutions. The 

distribution of Pareto designs against the design variables is shown by 4-dimensional bubble 

charts in Figures 4 – 8. In the 4-dimensional bubble chart the x-axis represents the design 

variable, while on the y-axis the one response variable, i.e., surface roughness in this case, is 

plotted, while the bubble diameter and bubble colour indicate respectively the material 

removal rate and the flank wear. Figure 4 shows the distribution of Pareto optimal designs 
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with the increase in depth of cut. Most of the Pareto designs lie in a range of depth of cut 

from 2.0 mm to 3.5 mm. For the feed rate, the distribution of Pareto designs shows that most 

of the designs are obtained between 300 mm/min and 440 mm/min. The speed range for the 

most compromised designs is 5380 rpm to 5480 rpm. The most feasible Pareto designs are 

obtained between the MQL flow rates of 0.3 ml/min and 0.6 ml/min. The range of volume 

fraction of nanofluid which gives the best compromised designs is 1.1% to 2.6%. 

 

 
 

Figure 7. Pareto designs distribution with cutting speed. 

 

 
 

Figure 8. Pareto designs distribution with volume concentration of nanofluid. 
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Selection of the Best Compromised Design  

The result of multi-objective optimization is a set of Pareto optimal solutions which present 

the trade-offs among the three objectives. At the end of the optimization, there are too many 

solutions to choose from. In this case, 1156 Pareto designs are obtained. In order to decide 

which design is the most optimal or most compromised among all the solutions from a list of 

optimal Pareto designs, a multi-criteria decision making approach is used. Alternative Pareto 

designs are ranked according to their fitness to the applied evaluation criteria. The MCDM 

approach is based on a genetic algorithm which is iteratively run for all the sets of Pareto 

designs as the initial population until the ranking of designs is obtained. The results converge 

to a list of designs arranged in descending order of their fitness evaluation. Preference 

weightage is assigned to the objectives according to process requirements. Assignment of 

these weights depends highly on the decision maker. Table 2 shows the most optimal design 

parameters as obtained after MCDM iterations. These designs are based on equal weightage 

assigned to each response variable, while the best compromised design is also obtained for 

the conditions where surface roughness is given higher weightage, i.e., the quality of the 

production process is twice as important as the flank wear and material removal rate. 

 

Table 2. Best compromised design parameters obtained after MCDM. 

 

CONCLUSIONS 

 

A multi-objective optimization approach is applied to the end milling process of aluminium 

alloy 6061 T6 with minimum quantity lubrication using water-based TiO2 nanofluid as the 

cutting medium. Minimization of surface roughness, maximization of the material removal 

rate and minimization of tool flank wear are taken as objective functions optimized 

simultaneously in terms of the cutting parameters. Design and functional constraints are 

applied to the optimization problem in addition to the process goals in order to filter the 

undesired or unfeasible designs. The result of the optimization is the Pareto solutions, i.e., 

non-dominated solutions selected from the sets of feasible designs. Selection of the best 

solution from a large number of Pareto designs is carried out by a Pareto-rankings approach 

using a genetic algorithm based multi-criteria decision making application. The results show 

that a configuration of input parameters with cutting speed = 5427.4 rpm, feed rate = 342.55 

mm/min, depth of cut = 2.8950 mm, MQL flow rate = 0.31 ml/min and volume concentration 

of nanofluid = 1.43% can be considered as the best alternative parametric configuration for 

achieving the desired objectives and process goals provided all the three objectives are given 

equal weightage. The design parameters for an optimization problem with higher weightage 

Speed 

(RPM) 

Feed  

rate 

(mm/min) 

Depth of cut 

(mm) 

MQL  

flow rate 

(ml/min) 

% volume 

concentration 

of nanofluid 

Ra 

(m) 

MRR 

(mm3/min) 

Tool  

Wear 

(µm) 

Preference 

weightage 

5428.5 433.00 2.8 0.31 2.10 0.6580 1.3271x104 33.20 Ra = 2 

 MRR =1 

TW = 1 

5427.4 342.55 2.9 0.31 1.43 0.2084 1.0992 x104 33.96 Ra  = 1 

MRR =1 

TW = 1 
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assigned to the surface quality of the product are cutting speed = 5428.5 rpm, feed rate = 

433.0 mm/min, depth of cut = 2.79 mm, MQL flow rate = 0.31 ml/min and volume 

concentration of nanofluid = 2.1%.   
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