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ABSTRACT 

 

This paper aims to study the properties of 300µm thickness 304 stainless steel. This 

research topic was selected considering the high demand for the production of small 

products such as smart phones, solar systems, hard drives, etc. Stainless steel was chosen 

for its low cost, suitable weight, and good mechanical properties in terms of strength and 

deformation compared to other materials. However, specimen size and strain may affect 

the results achieved. In this study, the effects of 2% and 5% strains on the fatigue strength 

of very thin 304 stainless steel sheets were investigated. Fatigue samples were cut into 

dumbbell-shapes with a rectangular cross-section as per ASTM E8. The tensile testing 

results showed that 300µm thickness heat-treated specimen sheets had less strain 

hardening with clear evidence of yielding. The fatigue test showed that higher strain 

values lengthened the fatigue life cycles of the stainless steel specimens. From this study, 

it can be concluded that tensile strain can improve the fatigue strength of very thin 304 

stainless steel sheets. 
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INTRODUCTION 

 

Owing to the fast-paced technological development, stainless steel is widely used in many 

industries. The properties of stainless steel make it suitable as a component in many 

industrial applications such as in chemical as reported by Marques et al. [1] and 

automotive industries as reported by Wright, Lei et al., Ha et al, Shah et al. and Jamil et 

al. [2-6], electronic devices as mentioned by Lee et al. [7], medical instruments as reported 

by Hadrboletz et al. and Connolley et al. [8, 9], and other industries as mentioned by Bell, 

Nilsson and Molak et al. [10-12]. The popularity of stainless steel can be attributed to its 

ability to withstand high stress and operate at high temperatures. In recent years, the 

market demand for products such as pin connectors, micro-screws, springs, IC sockets, 

micro-gears and micro-shafts has increased significantly due to the downsizing of 

products as reported by Engel and Eckstein, Su et al., and Liu et al. [13-15]. The fact that 

material properties change with specimen sizes has been well-known for several years as 

mentioned by researchers Neugebauer, and Doerner et al. [16, 17].  
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Miniaturisation technology is now crucial in the fabrication of micro parts. When 

the size of a material is decreased to micro-scale, changes occur in its mechanical 

behaviour and such effects are called size effects as reported by Chan et al. [18]. Size 

effect is characterised by grain size, dimension of the specimen and size of the surface 

topography. Materials demonstrate mechanical properties such as modulus of elasticity, 

tensile strength, elongation, hardness and fatigue limit [19-22], and present their elastic 

and non-elastic behaviour when a certain force is applied. This indicates the suitability of 

a material to certain mechanical applications [23-25]. The tensile test is a method used to 

evaluate the structural response of steel to applied force with the result expressed as a 

relationship between stress and strain. The current study follows several previous 

researches that had dealt with macroscopic and microscopic behaviour and fatigue 

properties of pre-hardened austenitic stainless steel [26-29].Plastic deformation during 

forming can lead to deformation-induced transformation from the original ductile 

austenite phase to a stronger martensite [30-33]. In general, the formation of martensite 

depends on chemical composition, temperature, stress state, strain and strain rate [34-36]. 

The influence the strain rate has on mechanical properties of 304 stainless steels has also 

been reported by Refs.[37-42]. Over the last four decades, the thickness of car bodies has 

reduced significantly from 1.5 mm to less than 0.5 mm. This is mainly due to the need for 

lighter cars to save fuel costs [43-45]. The high strength of a car body can be maintained 

using a newly developed thin steel sheet. However, the mechanical properties of materials 

are usually tested using a standard large sample, thus do not necessarily represent thin or 

small components’ properties. This is the driving factor behind many studies surrounding 

the mechanical properties of micro-sized specimens used in the production of tiny metal-

based components. In this study, the effect of tensile strain on the mechanical properties 

(i.e., hardness, tensile behaviour and fatigue strength) of a very thin 304 stainless steel 

sheet was investigated. The results were then compared to the fatigue strength of hardened 

304 stainless steel. 

 

METHODS AND MATERIALS 

 

Experimental Procedures 

This study used a very thin 304 stainless steel sheet with a thickness of 300μm.The 

chemical composition of the material (wt. %) is listed in Table 1. As shown in Figure 1, 

experimental samples were machined from 300µm sheets into dumbbell-shapes using an 

Electrical Discharge Machining (EDM) wire cutter according to ASTM E8 [46]. The 

width and length of gauge area were 5 mm and 28 mm, respectively. Vickers hardness 

was implemented using the Zwich Roell Indentec micro-hardness tester according to 

ASTM E384 [47]. The hardness test was conducted on the surface sample with a 100g 

load indenter and a dwell time of 15 seconds. The test was carried out ten times for each 

sample at different location points for two different cases: first, for the as-received 

material and second, for heat-treated material. The final Vickers hardness result was 

expressed as an average of the two. All the samples were annealed at 700⁰C to relieve the 

stress caused by the cold and EDM cutting process. Several tests were conducted to 

estimate the hardness, tensile strength and strain process of 2% and 5% of the annealed 

samples. The fatigue strength was then compared to that obtained by Bomidi et al. [48] 

for hardened 304 stainless steel according to ASTM E468 [49].  
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Table 1. Chemical composition (wt.%). 

 

C Mn F S Si Cr Ni 

0.08 2.00 0.045 0.03 1.0 18.0-20.0 8.0-11.0 

 

 
Figure 1. Tensile specimen size and configuration (units in mm), thickness is 300µm. 

 

  
        (a)                                                                           (b) 

Figure 2. Microstructures of 304 stainless steel sheet with a thickness of 300µm 

 (a) not annealed (b) after being annealed. 

 

The tensile test was performed using a Zwick Roell Z100 universal testing 

machine of 100kN capacity. Three samples (as-received and heat-treated) were used. 

These samples were labelled 1, 2 and 3 and were ground using emery papers, polished 

using buff clothes with 1µm diamond suspension, before being etched to reveal the 

microstructure. The microstructures of 300µm thickness 304 stainless steel thin sheets 

without annealing are shown in Figure 2(a), and those after being annealed are shown in 

Figure 2(b). The grain size of the samples was about 20-25µm. All fractured surfaces of 

tensile and fatigue samples were then observed using Scanning Electron Microscopy 

(SEM). Broken specimens after the tensile and fatigue tests were fixed to a jig before put 

in a vacuum chamber for SEM observation. The SEM used was the EVO series by Zeiss. 

15 kv was used for the imaging of the fractured surface.  

 

RESULTS AND DISCUSSION 

 

Vickers Hardness Test 

Hardness testing is very useful for the quality control of manufacturing processes, 

evaluation of materials, and for research and development purposes. Although hardness 
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is empirical in nature, it is also an indication of ductility. Hardness may also correlate to 

tensile strength in many metals. In this study, the Vickers hardness test was conducted on 

the sample surface with a load indenture of 100g and a dwell time of 15 seconds, 

according to ASTM E384 [47]. The test was carried out on two different cases: first, for 

the as-received material, which exhibited an average Vickers hardness of 387; and 

second, for the heat-treated material, which exhibited an average Vickers hardness of 357 

(Figure 3). The reduced hardness in the heat-treated samples could have been contributed 

by the stress released and softening caused by the heat treatment process. This is because 

the recrystallization of the ferrite structure causes a reduction of carbon (due to diffusion), 

increases ductility and reduces hardness as reported by Mudashiru and Adio [50]. 

However, the samples’ hardness decreased with increasing tempering temperature as 

mentioned by some researchers such as Fadare et al., Shrestha et al., and Ismail et al. [51-

53].  

 

 
 

Figure 3. Micro Vickers hardness of 300µm thickness 304 stainless steel thin sheet for 

as-received and heat-treated specimens. 

 

Tensile Properties 

The stress–strain curves for the 300µm thickness 304 stainless steel sheets are shown in 

Figure 4. A summary of the tensile properties is listed in Table 2. Three samples were 

tested from the as-received and heat-treated specimens. These samples were labelled 1, 2 

and 3 for each condition. The physical behaviour of the specimens was observed from its 

initial loading until specimen failure same as reported by Al-Bakri et al. [54]. Initially, 

both samples under the different conditions were loaded in the elastic range until they 

reached their respective elastic limits. Thereafter, both samples behaved differently. The 

heat-treated specimens exhibited a smoother stress-strain curve from the proportional 

limit to the ultimate stress level compared to the as-received specimens (Figure 4). For 

the non-heated specimens, the yield stress was evaluated based on the load at 0.2% strain. 

The ultimate tensile strength was found at 1240 MPa. Beyond the maximum point, the 

stress gradually decreased and the specimens failed at about 42% strain. However, this 

yield point (786 MPa) was much lower than the 0.2% yield stress of the non-heated 

specimens (893MPa). The upper yield point in heat-treated specimens was followed by a 

sudden reduction in stress to the lower yield point. At this stage, the specimens continued 
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to elongate without a significant change in their stress level for up to about 5% strain. The 

load increment was resulted in increasing strain values.  

 

 
 

Figure 4. Stress-strain curves of 300µm thickness 304 stainless steel sheets for as-

received and heat-treated specimens. 

 

Table 2. Tensile properties of 300µm thickness 304 stainless steel sheets for as-received 

and heat-treated specimens. 
 

 E (GPa) Ϭy (MPa) ϬUTS (MPa) El. (%) 

As received 171 893 1240 42 

HT 209 786 1160 26 

 

After the annealing treatment, the room temperature yield stress of the 300µm 

heat-treated specimens decreased from 893MPa to 786MPa, the ultimate strength 

decreased from 1240MPa to 1160MPa, and the tensile elongation decreased from 42% to 

26%v compared to the as-received specimens as mentioned by Wang et al. [55]. These 

results were similar to those reported by Wang et al. [55]. The Young’s modulus values 

were 209 GPa and 171GPa for the heat-treated and as-received specimens respectively 

(Table 2). After the heat treatment, the material softened and the stress due to 

manufacturing process, i.e. rolling process, was released. Therefore, the tensile yielding 

and hardness reduced are as shown in Figures 3 and 4. The heat treatment caused the 

increase in the work hardening rate, but also resulted in the reduction of tensile elongation.  

 

Fatigue Strength Test 

The S-N curves compare the fatigue strengths of 304 stainless steel sheets under heat 

treatment and strained to 0%, 2% and 5% samples with those after hardening by [48] as 

shown in Figure 5. The samples subjected to 5% strain had a higher fatigue life than the 

samples subjected to 2% strain, 0% strain and the hardened 304 stainless steel. Samples 

with 5% strain showed the highest endurance limit (675MPa) at 107 cycles, followed by 

2% strain samples (650MPa) and 0% strain samples (600MPa). The endurance limit for 

hardened samples was the lowest at 585MPa. This difference proves that higher strain 

values lengthen the fatigue life cycles and endurance limit of 304 stainless steel due to 
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both work-hardening and strain-induced martensitic transformation. This further proves 

that the process of inducing the 5% strain was successful in improving fatigue strength. 

This is because the straining process induced a large amount of dislocations, resulting in 

increased tensile strength and better balance between hardness and ductility as mentioned 

by Nakajima et al. and Uematsu et al. [56, 57].The straining process had a positive impact 

on the sample by delaying the generation and propagation of fatigue cracks. The crack 

propagation could have also been delayed by the hardened element as reported by 

Nakajima et al. and Nakajima et al. [58, 59]. Furthermore, the straining process provided 

high fatigue resistance to the material before the material finally failed. 

 

 
 

Figure 5.Comparison of S-N curves of SS304 heat treated and strained 0%, 2% and 5% 

samples, and hardened SS304 [48]. 

 

Fracture Behaviour Analysis 

Fracture Behaviour for Tensile Test  

The fractured surface was observed using a Scanning Electron Microscope (SEM) for the 

as-received and heat-treated 304 stainless steel sheet samples of 300µm thickness. The 

observations were made after the tensile tests were conducted to analyse the failure 

processes as shown in Figures 7 and 8. Figure 7 clearly shows small tensile dimples, 

cleavage and voids on the fractured surfaces of the specimens. The void seems to be less 

significant in becoming a fatigue crack initiation site compared to the damage induced by 

the localized dislocation and slip of persistent slip bands. Figure 8 shows a general 

phenomenon of significant necking. A reduction in thickness direction can be seen in 

Figure 8(a). Magnified observation shows small tearing with some dimples on the 

fractured surface of the sample as seen in Figure 8(b). However, the fractured surfaces of 

the heat-treated samples appear to be rougher with an apparent tear pattern associated 

with the dimples. This is because martensite fraction has a major influence on void 

nucleation and growth as reported by Chen et al. [60]. Figure 6 shows the fractured shape 

of the samples.  
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                                                 (a)                                   (b) 

Figure 6. Fracture shape of samples (a) tensile (b) fatigue. 

 

 
 

Figure 7. SEM fracture surface of as-received tensile specimens of 304 stainless steel 

sheet with 300µm thickness (500X magnification). 

 

  
                            (a)                                                       (b) 

Figure 8. SEM fracture surface of heat treated tensile specimens of 304 stainless steel 

sheet with 300µm thickness with (a) 100 X magnification, t0= specimen thickness 

before tensile test and t = specimen thickness after tensile test and (b) 2000 X 

magnification. 

 

Fracture Behaviour for Fatigue Test  

There were some differences in the fracture behaviour of the samples with 2% strain and 

that with the 5% strain. These differences can be seen in Figure 9. It shows the strain on 
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the 304 stainless steel sample when subjected to fatigue crack propagation area; the area 

is seen to shrink rapidly with growing cracks. The resulting surface is curved and 

undulated. This is because the strain had caused an increase in the density of dislocations 

and slips on the plane of the material microstructure as reported by Chen et al. and 

Shintani and Murata [60, 61]. The increase in both of these cases resulted in micro-cracks 

which further led to the generation of cracks. As the crack propagation process began, 

micro-cracks started connecting and caused faster crack propagation, thereby lowering 

the fatigue life of the material. In addition, samples that were subjected to 2% and 5% 

strains also showed a difference in their fractured surfaces. Samples subjected to the 5% 

strain had a smaller fatigue crack propagation area than the samples subjected to the 2% 

strain. This happened because in the case of the sample with the 5% strain, the value of 

the stresses became greater than the stress applied to the 2% strain. This increased the 

density of dislocations and slip planes, thereby contributing to the occurrence of micro-

cracks larger than those caused to the 2% strain as mentioned by Chen et al. and Shintani 

and Murata [60, 61]. These micro-cracks had led to the process of crack generation and 

rapid crack propagation.  

 

  
                                 (a)                                                                  (b) 

Figure 9. SEM of fractured surface of 304 stainless steel sheet fatigue test specimens at 

300µm thickness with (a) 2% strain and (b) 5% strain. 

 

CONCLUSIONS 

 

The conclusions obtained from experimentation on the fatigue properties of strained 304 

stainless steel materials can be summarized as follows; 

Heat treatment on the mechanical properties of the 304 stainless steel had 

influenced the 300µm samples. All samples showed differences in their Young’s 

modulus, yield stress, ultimate tensile strength, elongation and hardness values. However, 

the 300μm samples showed its highest ductility in both heat-treated and non-heat treated 

conditions. Furthermore, the as-received samples exhibited higher ultimate tensile 

strength compared to that shown by the heat-treated samples. Meanwhile, the heat-treated 

specimens exhibited a smooth stress-strain curve from the proportional limit to the 

ultimate stress level compared to the stress-strain curve of the as-received specimens. 

The fatigue test showed that the specimen with a higher strain value of 5%  

lengthened the fatigue life cycle more than by the 2% strained, 304 stainless steel and by 

the 0% strained, hardened 304 stainless steel. However, the fracture behaviour for tensile 

test showed small tension dimples, cleavage and voids on the fractured surfaces of the as-
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received specimens. There was a clear reduction in the thickness direction of the heat-

treated specimens (lower magnification) for the tensile tested samples. The fractured 

surfaces of the heat-treated specimens turned out to be rougher (on higher magnification) 

owing to the presence of a tearing pattern associated with the dimples. 
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