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 ABSTRACT 

 

Construction machines represent a particular set of difficulties when modelling their 

system dynamics. Due to their generally low velocities and unorthodox operating 

conditions, the standard modelling equations used to simulate the behaviour of highway 

vehicles can have a poor behaviour for these systems. This paper sets forth a vehicle 

model which is suitable for construction machines, which travel at low velocities and 

encounter significant external forces in daily operation. It then shows the work done in 

validating the machine model with experimental data. First, the overall vehicle dynamics 

are developed, including a model for the machine behaviour when pushing against a 

resistive force. Then, a wheel force generation model suitable for low-velocity systems is 

discussed. Finally, pertinent experimental results are presented. Two different model 

validation tests were run. Both tests generated results which were matched well by the 

simulation model. In fact, the model matches experimental data reasonably well for both 

roading and pushing conditions. This indicates that the modelling methods described in 

this work are appropriate for the modelling of low-velocity systems such as wheel loaders 

and other construction machinery. 

 

Keywords: Vehicle dynamics, dynamic system modelling, traction control, construction 

machinery 

 

INTRODUCTION 

 

Vehicle dynamics models for on-road machines have been around for quite some time 

and are relatively well understood. On the other hand, vehicle systems in other areas have 

not enjoyed the same level of interest; therefore, a standardised dynamics modelling 

method has not been established. The particular behaviour of construction machines 

requires some further considerations which differentiate them from standard passenger 

vehicles. Some previous work has been done in modelling these systems, including 

component modelling work by Wong [1] and Andreev [2], with even more investigations 

recently [3, 4]. Choosing a vehicle dynamics modelling strategy is often heavily 

dependent on the application at hand. Many different dynamic models exist for describing 

aspects of the vehicle suspension system [5] or various resistances [6]. Instead, this work 

focuses on modelling the driveline and wheels of construction machines. Different 

approaches to the problem of the wheel and tire dynamics modelling have been done in 

the past, each incorporating different idea or physical models [7-10]. Most common 

modern methods stemmed from variations on the seminal work done by Pacejka [11]. 
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This is perhaps the most widely used tire force model in vehicle dynamics literature and 

simulation software. Its relatively simple formulation makes it a good choice for 

implementing into system models but also causes numerical issues when addressing 

systems which fall outside the normal conditions for vehicle simulations. As construction 

machines are primarily driven at low velocities where the standard wheel dynamics 

equations become unstable, these equations must be modified to allow simulations to run 

effectively. Various works have presented different methods of accounting for this 

behaviour. Pacejka himself presents one such method [12], while another was set forth 

by Bernard [13]. The work done in this research builds on the foundation laid by Bernard. 

 This research also includes an experimental investigation into the characterisation 

of tires used on construction equipment. These tires are much larger than passenger 

vehicle tires, and they are designed with other characteristics in mind, so their force 

generation characteristics can be quite different than those of typical on-road tires. In 

order to determine the slip-friction profile of the construction machine tires, a series of 

tests were run by using a state observer to estimate the force at each wheel. This method 

is partially based on the work done by Rajamani [14]. The purpose of this paper is to 

formulate a vehicle dynamics model suitable to study the typical low-velocity operation 

of construction machines. Starting from the torque provided by the engine, the model 

determines both the vehicle and the wheel velocities, accounting for the behaviour of the 

mechanical powertrain transmission system and the tire-ground interaction. This model 

improves on previous work in the field by incorporating considerations which allow for 

simulations of standard operating modes, such as pushing and digging at low speed. The 

model is then validated by comparing it against experimental data. 

 

METHODS AND MATERIALS 

 

To verify the usefulness of the simplified model, testing was conducted to show the 

simulated results as compared to real-world data. First, a typical vehicle model for 

straight-line motion is described, including considerations for low-velocity motion and 

the effect of resistive forces opposing the machine motion. This model includes wheel 

and body kinematics, as well as a differential slip-friction model. Some methods used to 

overcome some of these model limitations for the case of construction machinery. Then 

contains descriptions of test setups and corresponding data which were used to assess the 

suitability of the vehicle model. The reference machine used for this research is a 

fourteen-metric ton wheel loader with a bucket which can hold up to 2.3 m3 of material 

(Figure 1). This machine has been used within the authors’ research group in other 

research activities related to controlling the motion to reduce cab vibrations [15]. In order 

to validate the models created for simulating the system, the slip-friction characteristics 

of the wheel loader tires needed to be determined. To that end, a method was implemented 

using a state observer to estimate the force at each tire. This estimator uses measurements 

of the machine’s linear velocity, the four-wheel velocities, and the acceleration of the 

vehicle in order to make this force estimation. Then, tests were conducted to validate the 

simplified resistive force model used in simulations. These tests required an estimate of 

the total pushing force of the machine. To achieve this estimate, the pressure in the main 

boom cylinders of the wheel loader, as well as the angle of the boom, were measured and 

then converted into force using geometric constraints. The sensors needed to take these 

measurements are represented in Figure 1. Furthermore, data from the wheel loader’s 

CAN bus, including engine torque and speed, were recorded in order to better define each 

test. 
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Figure 1. Wheel loader with instrumentation. 

 

Vehicle Dynamics Modelling 

The general model of the wheel loader system for studying linear motion and the effects 

of longitudinal forces on the system are discussed. A similar method for on-road vehicles 

was developed and validated by Ahmad [16]. A schematic of the overall system model is 

shown in Figure 2. 

 
 

Figure 2.Vehicle dynamics model schematic. 

 

Quarter-Car Vehicle Model 
The first step is to develop a proper vehicle dynamics model known as a quarter-car 

model, wherein the system is represented as a single mass sitting atop a single wheel (see 

Figure 3). This model only considered the longitudinal motion of the vehicle (i.e. toward 

the front or rear of the machine), so that what is left is a simple formulation of machine 

dynamics. For discussions on lateral forces and moments not included in this model, see 

[17-19]. When the system is laid out in such a configuration, the dynamics are described 
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simply by doing a force and torque balance on the chassis and wheel, respectively [20]. 

This leaves the following equations for describing the system behaviour: 

 

    sgn sgnx x roll x resist xm F F v vv F    (1) 

  sgnw E B d xω T rI T ω F   (2) 

 

 
 

Figure 3. Quarter-car vehicle model. 

 

 In Equation (1), m is the mass of the chassis, vx is the longitudinal velocity of the 

vehicle, Fx is the longitudinal tractive force generated by the wheel, Froll represents the 

rolling resistance of the machine, Fresist is the other resistive forces. Resistive forces 

include air resistance, resistance from driving on an incline, and other forces which can 

act against the motion of the vehicle (of course, in the proper conditions, these can become 

assisting forces as well). For the purposes of this research, rolling resistance was 

considered constant, while other resistances (such as air resistance) were neglected due 

to the fact that the system is always at relatively low velocities. These simplifications are 

well in line with standard vehicle dynamics modelling practices [1, 20, 21]. More 

information on complex modelling of rolling resistance can be found in [12] and [22]. 

Other works have included further resistances, including those stemming from the 

deformation of soil at the tire-ground interface [23, 24]. Equation (2) includes Iw, the 

moment of inertia of the wheel; TE, the engine torque being applied on the wheel; TB, the 

braking torque; and rd, the dynamic radius of the wheel. The dynamic radius represents 

the distance between the centre of the wheel and ground when the wheel is in motion, and 

its value is between that of the tire’s unloaded radius and its static loaded radius. In this 

work, rd is calculated by using the method from Jazar [22]. When incorporated into the 

full vehicle model, Equation (1) remains more or less the same, as the chassis is modelled 

as a single mass; however, Equation (2) is copied for use with each of the four wheels. 

Therefore, these two equations become five equations: one for the linear chassis dynamics 

and four for the rotational wheel dynamics. 
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Two-Axle Vehicle Model 
The longitudinal tractive force from each tire is dependent on the normal force at that 

wheel. Thus, it is important to accurately model the normal forces. In order to describe 

how the normal force on each tire changes over time, it is possible to simply treat each 

axle as its own contact point with the road surface with the effect of both tires on a given 

axle rolled into a single point force. Figure 4 shows a schematic of the system and 

highlights the important forces which act on the machine in a normal straight-line 

operation. By doing a force and moment balance similar to that in [22], the normal force 

at each wheel can be found. 

 

 2
1

1 1

2 2

pCG
z push

hhl
F mg ma F

l l l
    (3) 

 

 
2

11 1
,

2 2

pCG
z push

hhl
F mg ma F

l l l
    (4) 

 

where Fz1 and Fz2 are the normal forces at each wheel on the front and rear axles, 

respectively, m is the mass of the machine, l1 and l2 are the horizontal distances from the 

centre of mass of the machine to the centre of the tire contact patch at the front and rear 

wheels, respectively, l is the total distance between front and rear contact patches, a is the 

longitudinal acceleration of the vehicle (positive toward the front), hCG is the height of 

the vehicle centre of mass, Fpush is the horizontal pushing force of the machine, and hp is 

the height of that force acting on the machine. 

 

 
 

Figure 4. Two-axle vehicle model including vehicle acceleration and pushing action. 

  

As this machine is designed for digging into a work pile of material, it is important 

that the simulation model be capable of representing a resistive force, as well as the 

machine reaction to such a force. If the resistive force is caused by a material pile, finding 

an appropriate model can be relatively complicated, as shown in [25]. For the present 

work, however, the test condition needed to be more repeatable than digging into a work 

pile. Therefore, the experimental setup consists of the wheel loader pushing against 

upright tires, similar to the condition shown in Figure 4. In general, the tires act as a linear 

spring-damper system in resisting the motion of the wheel loader. For this work, then, the 

resistive force Fpush is calculated as: 

 



 
Alexander and A. Vacca / International Journal of Automotive and Mechanical Engineering 14(4) 2017   4616-4633 

  

 

4621 

 
, 0 and 0

,
0, else

tires tires tires tires tires tires

push

k x c xx x
F

  
 


 (5) 

 

where ktires and ctires are the equivalent spring and damper constant for the upright tires, 

respectively, and xtires and tiresx  are the distance the machine has pushed into the tires and 

the machine velocity, respectively. The decision structure keeps the tires from exerting a 

negative resistance force on the vehicle (i.e. pulling it forward). This model should be a 

very good representation of the resistive force generated in this test setup. 

 

Complete Vehicle Model 
Since the brakes are controlled independently, the braking torque at each wheel is trivial 

to compute. The engine torque to each wheel, on the other hand, can only be found by 

examining how the engine torque is distributed to each wheel through the transmission 

system. For the purpose of this research, it is assumed that the input engine torque into 

the transfer case of the wheel loader is known. Therefore, other transmission components 

such as the torque converter are neglected. Furthermore, the wheel loader is a four-wheel 

drive machine, so all four wheels will see an input torque from the engine via the 

transmission system. The first component of the transmission system to be modelled is 

the differential. The present system has two differentials, one at the front and one at the 

rear. The differentials are responsible for distributing the torque from the driveshaft to the 

wheels. Through the use of a planetary gear, the torque from the driveshaft is split evenly 

to each side. 

 

 
, , ,

1
,

2
i L i R diff DS iT T R T   (6) 

 

where Ti,L and Ti,R are the input torques at the left and right wheels on axle i, respectively, 

Rdiff is the gear ratio from the driveshaft to the differential, and TDS,i is the torque input 

from the engine at the driveshaft connection to axle i. 

 Along with splitting the torque equally to each wheel, the differential allows the 

wheels to turn at different speeds. The following is the only relevant equation for relating 

the wheel speeds at the differential: 

 

  , , ,

1

2
DS i i L i R

diff

θ θ
R

θ    (7) 

 

 In Equation (7), 𝜃̇ DS,i is the rotational velocity of the driveshaft at axle i, and 𝜃̇ i,L and 

𝜃̇ i,R are the rotational velocities of the left and right wheels on axle i. In essence, what the 

driveshaft sees is the average of the two wheel velocities, scaled by a gear ratio. Equation 

(6) and (7) are applicable to both the front and rear differentials, which are essentially the 

same model used for both components. 

 For the case of the wheel loader, the engine torque is transmitted to the driveshaft 

via a locked transfer case. This means that the front and rear halves of the driveshaft are 

actually linked, so that their velocities are equal. The modelling of such a transmission 

case is more difficult than for an open differential. The process used in this research treats 

the transfer case, the front and rear differentials, and axles as a rotational dynamic system 

with the front and rear driveshaft sections acting as very stiff rotational spring/dampers. 



 

Longitudinal vehicle dynamics model for construction machines with experimental validation 

 

4622 

This is consistent with the methodology described in [26]. Through some simplifications 

of the rotational system, the following relationships are found: 

 

    , , , , ,

1

2 2 2

DS DS
DS F E DS F DS R DS F DS Rθ θ θ

k c
T T θ      (8) 

 

    , , , , ,

1
,

2 2 2

DS DS
DS R E DS F DS R DS F DS Rθ θ θT θ

k c
T      (9) 

 

where TE is the torque from the engine into the transfer case, kDS and cDS are the equivalent 

spring and damper constants, respectively, for the driveshaft sections, DS,F and DS,R are 

the current angular positions of the front and rear driveshaft sections, respectively, and 

𝜃̇ DS,i and TDS,i are the same as in Equation (6) and (7) above. 

 If kDS and cDS chosen are sufficiently high, Equation (8) and (9) allow the torque at 

the front and rear differentials to be significantly different, while maintaining positions 

and velocities at the front and rear driveshaft sections which are very similar to each other. 

 

Tire Slip Dynamics 

 

This section describes the motion of the different vehicle components with the proper 

force and torque inputs. However, the difficulty now becomes related to the tire tractive 

force to the input torque given to the wheel. 

 

Wheel Slip 
Several different wheel force estimation models exist in the literature but the most widely 

used is the Magic Formula tire model set forth by [11]. This model relates the longitudinal 

tractive force of a tire to a parameter known as the slip ratio. Due to tire deformation and 

irreversible processes such as friction heat loss and material wear, when a torque is being 

applied to a wheel, these two values do not match. Therefore, an algebraic definition of 

slip ratio κ at wheel i can be defined as in [12]: 

 

 ,d i x
i

x

r vω
κ

v


  (10) 

where rd is the dynamic radius of the wheel, ωi is the rotational velocity of wheel i, and 

vx is the linear velocity of the vehicle. The slip ratio represents the tire deformation 

mechanism which results in a friction force between the wheel and the road surface. 

 

The Magic Formula Tire Model 
As the slip ratio defines a specific friction condition for a given wheel, in this research, 

the so-called Magic Formula was used to relate wheel slip to the friction coefficient at 

that wheel. The longitudinal force was then calculated by multiplying this friction 

coefficient by the normal force at the tire-road interface. 

 

  , , , ,x i x i i N iF κ Fμ   (11) 

 

where Fx,i is the longitudinal force at tire i, μx,i is the friction coefficient at wheel i (a 

function of wheel slip κi), and FN,i is the normal force at wheel i. The normal force at each 

wheel is calculated by using the two-axle model described. 
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Figure 5. Examples of slip-friction curves defined by the Magic Formula tire model. 

 

 The Magic Formula, then, relates to the slip ratio at a given wheel to the friction 

coefficient at that wheel. 

 

     1 1

, , , , , , ,sin tan tan .x i i x i x i x i i x i x i i x i iD C B Eμ κ κ B κ B κ        
 (12) 

 

 The terms of this equation (Bx,i through Ex,i) are dimensionless numbers which affect 

the shape of the resultant Magic Formula curve in various ways. (Of course, μx,i and κi are 

themselves dimensionless terms.) In [27], Pacejka described these terms as follows: Bx,i 

is called the stiffness factor, Cx,i is the shape factor, Dx,i is the peak factor, and Ex,i is 

referred to as the curvature factor. Two different examples of Magic Formula tire models 

and their corresponding parameters are shown in Figure 5. 

 

Tire Slip modelling for Low-Velocity System 
The approach described in the previous paragraphs has been widely adopted for 

describing tire force in-vehicle systems; however, it can easily be seen that it is prone to 

stability issues in some conditions. The part of this model most susceptible to issues is 

Equation (10). When the vehicle velocity vx is very low, a small variation in either the 

vehicle velocity or the wheel velocity will cause a large change in slip ratio. In low-

velocity conditions, the slip calculation becomes too stiff to find an appropriate solution 

numerically. Furthermore, this model does not allow the vehicle velocity to reach zero, 

as the slip is undefined in that case. For high-speed automobile simulations, this is not an 

issue. However, for construction machines such as the wheel loader, much of their 

operation cycles take place at or around zero velocity. Therefore, a tire slip model needed 

is stable at very low-velocity. Based on the work done by Bernard [13], the slip ratio 

definition was changed from the algebraic expression above to a differential equation. 

 

 ,
x d i x

i i

ω
κ κ

v r v

B B


   (13) 
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where B is the longitudinal relaxation length of the tire. In general, the relaxation length 

represents the distance the vehicle must travel before the tire force has risen to a certain 

percentage of its steady-state value [28]. 

 It can be seen that by including the first-order dynamic with the relaxation length, 

there is no longer a velocity term in the denominator of the equation. Therefore, the 

system dynamics with Equation (13) much better behave at low-velocity than its algebraic 

counterpart. 

 

Resistive Torque and Force Considerations at Low-Velocity 

Many of the difficulties in modelling systems such as the wheel loader considered here 

arise from the fact that the vehicle works primarily at low-velocities. This is seen quite 

clearly in sequences which include resistive forces and/or torques which cause the vehicle 

to reach zero velocity. For the case at hand, these are primarily the resistant forces acting 

on the linear motion of the vehicle and the braking torque acting on the rotational motion 

of the wheels as shown in Equation (1) and (2), respectively. 

 The unique quality which these forces and torques have is that they act opposite the 

body direction of motion. At low velocities, excessive forces cause an over-correction of 

the vehicle or wheel velocities, which in turn can create significant oscillations in the 

modelled system, which are not indicative of what occurs in the real world. They also 

cause issues when running even simple simulations, and they can impact results 

negatively. Therefore, a structure which will remove the system’s tendency toward these 

oscillations is needed. Different approaches have been proposed in the past. This includes 

Bernard [13], who adds a “damping force” to the model at low velocities. Such 

constructions can yield quite positive results; however, they can add extra complexity to 

the model and for the purposes of this research, they are unnecessarily complicated. 

 Instead, the models proposed in this research replace the sgn function in Eqs. (1) 

and (2) with a saturation block to reduce the force or torque based on the operating 

condition. 

 

 ,

,

sat x
r sat r

x sat

v
F F

v

 
   

 
 (14) 

 , satB sat B

sat

ω

ω
T T

 
  

 
 (15) 

 

 In Eqs. (14) and (15), Fr,sat and TB,sat represent the resistive force and braking 

moment, respectively, after they have been adjusted based on the speed of the various 

system on which they are acting. The terms vx,sat and ωsat represent the saturation limits 

for the longitudinal linear system velocity and the rotational velocity of a wheel, 

respectively. The saturation function used in these equations is the standard saturation 

curve, which limits the output between −1 and 1. These equations scale down the resistive 

force or torque when the relevant velocity has an absolute value less than the saturation 

limit. One important aspect of this structure is that the resistive torque and force are zero 

when the pertinent velocity is zero. This certainly reflects the actual system performance, 

as these dissipative processes do not generate loads when there is no motion. The 

exception to this is the brakes, which have static friction as well as kinetic. The general 

behaviour of the system by using saturation blocks is shown in Figure 6. Illustrated is a 

simulation in which a constant braking torque is being applied to the system with some 
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initial wheel velocity ω > ωsat. As the wheel velocity decreases, it eventually crosses the 

braking saturation threshold velocity ωsat. Below this velocity, the braking pressure is 

scaled down to the wheel velocity. This represents a drastic improvement over the system 

with the sgn function implemented. 

 

  
 

Figure 6. Representative braking manoeuver with a saturation block applied to the 

braking torque. 

 

RESULTS AND DISCUSSION 

 

This section outlines the setups for the experimental activities related to this research. 

These experiments had two main goals. The first is to generate slip-friction data for the 

construction equipment tires, which have been largely neglected by previous tire 

modelling investigations. Secondly, these tests provide data with which the simulated 

system results can be compared. This will serve to help validate the assumptions and 

simplifications made in constructing the system model. 

 

Slip-Friction Tests 
One of the more important aspects of this work is generating a better estimation of the 

slip-friction behaviour of the large tires used for the wheel loader. In order to do this, a 

series of tests was conducted. These tests were based on the work done by Rajamani [14]. 

By analysing a range of torque commands to the system and their associated responses, 

the Magic Formula for a given operating condition can be approximated. The tests were 

also important in that they can be used to validate the system model. The Rajamani 

method is based on a state estimator which approximates the force at each wheel using 

measurements of wheel speed, vehicle speed, and vehicle acceleration. The seven 

different conditions to be tested are shown in Table 1. For this system, there is no direct 

measurement of the forces at each wheel. Therefore, Rajamani proposed the construction 

of a state-space system model with a state observer to estimate the force at each wheel. 

The observer structure is as follows: 
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 

,

ˆ ˆ ˆ

x Ax Bu

y Cx

x Ax Bu K y Cx

 



   

 (16) 

 

Table 1. Test conditions for slip-friction estimate tests. 

 

Parameter Ground Condition Tire Pressure 

Values for Test 

Dry concrete 
Normal 

Low 

Light snow on concrete 
Normal 

Low 

Heavy snow on concrete Normal 

Snow on grass 
Normal 

Low 

 

 
with the following state and output vectors were defined: 
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    
 
 
  




 , 

 

where x is the state vector for the system, u is the input vector, y is the output vector, and 

x̂  is the estimate of the real state-values. A, B, and C are the typical state-space system 

matrices which describe the dynamics of the system, and K is the observer that gains 

matrix, which controls the convergence of the state estimate to the actual state-values. All 

terms vx, ωi, and Fx,i have the same values as above, and Ttot represents the total torque 

into the system. It can be seen that the state vector here contains individual values of the 

force at each wheel Fx,i while the output contains only the sum of these four forces (found 

by using the data acquired by the accelerometer on the system). The other outputs used 

here are the vehicle velocity and individual wheel velocities (each of which has a 

dedicated sensor on the machine). Furthermore, the state observer will contain an estimate 

of the total torque into the system, for which no sensor is installed. The goal is to drive 

the state estimate x̂  to the actual value of the state x by using the available system 

measurements (or outputs) y. 
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Figure 7. Vehicle velocity data for slip-friction test. 

 

 In order to have the best possible representation of a given condition, it is important 

to test at extreme values of slip. Therefore, the tests were conducted in alternating cycles 

of rapid acceleration and rapid deceleration as shown in Figure 7. By using the state 

estimator described above, the force generated at each wheel was estimated and then 

correlated with the corresponding slip value for that wheel. Figure 7 also demonstrates 

the reliability of the state estimator used in the tire force estimation. For the vehicle 

velocity, both the measured data and the estimated values are shown. The estimate 

matches the data quite well, indicating that the estimator has a good performance for that 

state. Since all measured states match their estimates very well, it is likely that the 

unmeasured state estimates are also reliable, assuming a reasonably accurate system 

model [29]. 

 

 
Figure 8. Slip-friction data generated for the wheel loader system (heavy snow on 

concrete). 

 

Slip-Friction Curve Data 
Figure 8 shows a plot of resulting data for a particular test condition. For the purposes of 

this research, there is one major assumption which controls the Magic Formula modelling 

taken from these data points. This is the assumption that the slip-friction relationship has 

an odd symmetry. This gives two important constraints to the model: first, it will pass 

through the origin and second, the behaviour with positive slip mirrors that with negative 
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slip. With these restrictions, the entire Magic Formula model can be generated from the 

data shown in Figure 8. In order to properly fit the modelled curve to the data, the Magic 

Formula parameters (Bx,i through Ex,i) were adjusted manually to reduce the mean squared 

error for the model with respect to the measured data. 

 

  
Figure 9. Comparison of slip-friction model road condition. 

 

 Data for different road and tire conditions were taken, and curves were fit to each 

data set. Figure 9 shows a comparison of the resultant curves. This figure has some 

important results for the current research. First, the trend of road conditions is quite clear 

and also reasonable to what would be expected for this system. Dry concrete, the best 

case for a friction force generated between the ground and the wheels, has by far the 

highest friction coefficient for a given slip ratio. The other cases are relatively similar, 

with heavy snow having the lowest friction coefficient. Snow on grass was the most 

variable case but it is more or less comparable to heavy snow on concrete. This data is 

well in line with what is to be expected from literature, particularly the results listed by 

Rajamani [14] and [30], where the same behaviour was found for various ground 

conditions.  It should be noted that these slip-friction curves are not intended to match the 

actual system performance exactly. There are many different potential ground conditions 

which cannot all be tested in this way, and even within the same condition, there can be 

a high degree of variability in the resultant friction force. These data were taken primarily 

to give the investigators a good idea of reasonable values for the friction coefficient of 

each wheel. 

 

Machine Pushing Tests 
A testing area which contained three large tires on a barrier for the wheel loader to push 

against (Figure 10a) was constructed. The tires provide a stable and easily-repeatable 

horizontal force. The wheel loader itself was modified by placing a steel plate across the 

bucket (Figure 10b), so that the pushing force would be distributed on the tires instead of 

acting only on the blade and the edge of the bucket. Furthermore, steel plates were placed 

at the locations where the tires were when conducted the tests. The plates did not provide 

as much friction with the tires as the concrete, which gave the wheels a better chance of 

slipping. They also provided a more consistent surface, so that all four wheels were more 

likely to be in similar ground conditions than they would if they were on the concrete. 
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    (a)                                 (b) 

Figure 10. Experimental setup for resistive force model validation tests, showing (a) the 

tires for providing resistive force to the wheel loader, and (b) the steel plate installed on 

the front of the wheel loader bucket for pushing against the tires. 

 

 The wheel loader approached the tires at low speed and pushed against them in a 

low gear while keeping the accelerator at full throttle. This caused the wheels to start 

slipping. After allowing a few seconds for the system to converge, the accelerator was 

released and the system ceased pushing against the tires. By analysing the hydraulic 

pressure in the boom lift cylinder and position of the boom and bucket (which was kept 

constant for all experiments), it was possible to estimate the pushing force of the machine. 

 

 
Figure 11. Comparison of simulated and experimental results for wheel velocity. 

 

Tire Model Validation 
With representative slip-friction parameters in the model, it can now be validated by 

comparing it with the data generated in the experiments. To do this, the inputs to the 

model (engine torque and braking pressure) must be approximated. Fortunately, the state 

estimator used to find the force at each wheel also generated an estimate of the input 

torque to the system. This, along with an estimated braking torque was used as the input 

to the system model.  There were still some differences between the model and the real-

world data but this was to be expected. Friction force generation is a stochastic process, 

where the instantaneous value has a number of different factors, some of which are 

random in nature. Also, uncertainty on the exact value of the moment of inertia for the 

wheel rotational dynamics, which included also the driveshaft and axle were present. 

Therefore, no two cycles will look exactly the same. However, it can be seen from the 
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plot in Figure 11 that this simulation model follows the overall trend of the data quite 

well. 

 

Resistive Force Model Validation 
Another significant aspect of this model is that it is being used for construction equipment 

which is often used for pushing or digging against a resistive load. Experimental data 

were generated by pushing against the tires as described. The results of one such test are 

shown in Figure 12. This figure shows both the estimated pushing force of the reference 

machine (in grey) and the wheel speeds (in various colours). The force showed what the 

resistive force model must replicate, while the wheel speeds showed the system model’s 

response to that resistive force. It can be seen that two of the four wheels began slipping 

and converged to some maximum speed (related to the engine speed and gearing), while 

the other two wheels dropped down to zero velocity. Simulations incorporating the 

resistive force model were also conducted. The results of one such simulation are shown 

in Figure 13. In general, this plot showed that the simulated system had more or less the 

same behaviour as the real-world system. It should be noted that the wheel forces at each 

wheel were modified slightly to cause their speeds to diverge as they did in the 

experimental data. 

 

 
Figure 12. Experimental results for resistive force test. 

 
Figure 13. Simulated pushing force using the simplified model. 

 

 All in all, the simulation model seemed to replicate, within reason, both the resistive 

force generated by the tires in experimental tests and the response of the system to such 
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a force. In both cases, the wheels initially slowed down but then began slipping up to the 

maximum value allowed by the transmission speed. And as the wheels begin to slip, the 

resulting pushing force from the machine was significantly reduced. 

 

CONCLUSIONS 

 

This paper sets forth the work done in developing and verifying an accurate dynamic 

model to describe the behaviour of a construction machine in terms of linear velocities of 

the wheels and the vehicle itself, starting from the given input torque and ground 

conditions, such as resistance forces (pushing). The dynamic model included 

considerations for vehicle and wheel dynamics, including weight transfer between axles 

and the effect of the transmission system. It also included a model for wheel slip 

behaviour, designed in such a way that the low velocities (typical of construction 

machines), which can cause serious issues in certain modelling methods, did not have 

such a negative impact on the simulation. It was further found that it is necessary to model 

dissipative forces and torques in such a way that the oscillations which are often present 

when the vehicle reaches zero velocity were eliminated. Experiments were then 

conducted to determine the slip-friction characteristics of a reference wheel loader. Tests 

were also conducted in order to examine the validity of the resistive force model included 

in the system dynamics. All in all, the system model matched the data quite well, and it 

is being used in further simulations to test various system modifications and operating 

cycles. By modifying only a few parameters (masses, geometries, etc.), the same analysis 

can be achieved on a number of different machines without the need for a time-consuming 

test regimen. For future works, it should be expanded upon easily to include 

considerations for engine and drivetrain dynamics, braking system dynamics, and more. 

Future work with this model should include such components, as well as potentially 

expanding to a system which considers lateral (side to side) motion of the machine, on 

top of the planar motion already modelled. All of these and more are relatively simple to 

implement because of the versatile nature of this vehicle model. 
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